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 Introduction
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 We don‘t need small area estimation

Small Area Estimation



 If we rely on small are estimation we probably made already some mistakes in 
planning our survey regarding

 Overall sample size

 Wrong choice of areas/domains

 Mismatch between planned and to be published area results

 Post-correction of results to be published (can we even publish results in 
subcategories/deeper disaggregation level?)

 Serious underestimation of non-response



 Example

 A sample size of 1000 people has been considered to get an estimate for whole
Jordan

 To answer a question of expenditure for eating out

 After sampling one decides to regionalise the estimates

 Governorate of Jarash by chance gets only a net sampling size of 5

 With classical methods sample size of 5 the results for Jarash will be unreliable
and unpublishable



 In general: Target is to improve our estimates in terms of accuracy

 This can be done by

 Sample size

 Sampling design

 Estimation method

 Best: as a combination of all the three items



 Small are estimation is a tool which can - but doesn‘t guarantee - in some cases
improve the quality/reliability of our results if sample sizes are too small for
classical/established estimation procedures.

 When we need to use small area estimation the

 Sample size is already fixed

 The sample is already drawn

 So small area estimation is the last resort to improve – if needed – the reliability
of survey results



 We need small area estimation if classical estimation results are unreliable. 
When are they unreliable? Depends on the quality standards you like to achieve.

 For instance in terms of setting threashholds for

 Relative/absolute standard errors

 MSE

 ..



 What are classical estimators?

 In terms of survey sampling methods, we like to use the selection probabilities
for selecting a unit from a population to create our estimation. Because the
selection probabilities are defined by the the sampling design, resp. The chosen
sampling method, we call these estimates also design-based

 Horvitz-Thompson estimator

 Ratio estimator

(General) Regression estimator

 Difference estimator



 A typical small area estimator consists of a combination of

 Design-based estimator

 And a synthetic estimator



Census



 Horvitz-Thompson estimator

Estimation



Estimation

In survey sampling we often sample with different selection probabilities.

A simple unbiased estimator for the population total or population mean taking in 
account unequal selection probabilities is the so called Horvitz Thompson 
estimator

For the population total:

With selection probability 𝜋𝑖 and sample units 𝑦𝑖

Example: simple random sampling without replacement: 𝜋𝑖 =
𝑛

𝑁
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 Ratio estimator
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Estimation

If auxiliary information is available we can in general greatly improve the quality of 
our estimation by using estimators which include this information

Ratio estimator:

with 𝑦𝑖 , 𝑥𝑖 sample units and X population total of an auxiliary variable

Estimation



Estimation

Properties of the ratio estimator: 

▪ The accuracy improves with the correlation between X 
and Y 

▪ Not unbiased, but at least approximatively so (n large)

Rule of thumb: when comparing with Horvitz-Thompson 
we can expect a noticeable improvement of acccuracy
when 𝑛 ≥ 30 and correlation coefficient≥ 0,6

Estimation



Estimation

Example: circumference of Pumpkins

Estimation



 Difference estimator

Estimation



Estimation

Whereas the ratio estimator relies on a significant multiplicative relationship the difference
estimator shows his strengths with significant additive relationships with auxiliary variables

difference estimator:

෠𝑌 =
𝑁

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 + 𝑋 −
𝑁

𝑛
෍

𝑖=1

𝑛

𝑥𝑖

Correction of the sampling estimator by the difference of the total value and the estimated
total of the auxiliary variable
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 Properties of the difference estimator: 

 Auxiliary variables should be similar to the target variable in terms of 

dimension and  functionality

 Unbiased

 Rule of thumb: when comparing with Horvitz-Thompson we can expect a 

noticeable improvement of acccuracy when 𝜌𝑥𝑦 > 0,5
𝑠𝑑(𝑦)

𝑠𝑑(𝑥)
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Example: Turnover of the last 50 years

Estimation



 Regression estimator
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Estimation

A further improvement can be expected by using a (generalised) regression estimator (GREG)

The regression estimator uses the linear relationship between the target variable y and an auxialiary
variable x (here: mean estimator): 

ത𝑦𝑟 = ത𝑦 + 𝑏 ത𝑋 − ҧ𝑥

ത𝑦 and ҧ𝑥 are Horvitz-Thompson estimates for the sample variables, and  ത𝑋 the true population value of 
the auxiliary variable.
We can interprete this estimator as a correction of the sample mean in relation to the auxiliary
variable
The parameter b can be calculated in various ways, usually estimated trough the sample valuesw
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 Properties of the regression estimator: 

 It combines the difference estimator and the ratio estimator

 For small samples this estimator is particuliar sensitive to outliers!

Estimation



Estimation

Example: Weight and height
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Estimation

The generalised regression estimator (Generalized Regression Estimator, GREG) includes
additionally certain different sample weights and can be displayed as:

Ƹ𝑡𝐺𝑅𝐸𝐺 = ෍

𝑖=1

𝑛

𝑤𝑖𝑦𝑖 +
෡𝛽´ ෍

𝑖=1

𝑁

𝑥𝑖 −෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖

with
መ𝛽 = σ𝑖=1

𝑛 𝑤𝑖𝑥𝑖𝑥′𝑖
−1 σ𝑖=1

𝑛 𝑤𝑖𝑥𝑖𝑦𝑖

In fact we are only estimating directly the regression parameter and not the target variable itself, 

which is then derived by the regression relationship
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Estimation

The variance of the GREG-estimator relys highly on the correlation between the target
variable and the auxiliary variable(s). 

A simplified version of the variance for the GREG-Estimator in the case of only one
auxiliary variable leads to

𝑉 Ƹ𝑡𝐺𝑅𝐸𝐺 =
𝑆𝑌
2

𝑛
∙ 1 −

𝑛

𝑁
∙ 1 − 𝜌2
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 Small area estimation
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 Small area: what does that mean?

 Small area refers to a stratum/subgroup etc. where only very few sample units exist

 This can occur if

 The original sample was not planned for this kind of subgroups

 Those subgroup sample areas are called then „unplanned domains“

 a high non-response rate leaves us with few data points in this stratum/subgroup

 Example: sample n=1000 pps on governate strata

Estimation



Estimation

Small area: what does that mean?

▪ Area is hereby not necessary a geographical unit

▪ Example: sample n=200 of salamanders

Estimation



Estimation

Small area: what is the consequence for estimation?

Few sample units means

▪ Inaccurate estimators (since variance is expected to be very large)

▪ If only 1 or even no sampling units exist, classical estimation is impossible

▪ -> results from classical estimates are unreliable and cannot be calculated or published!

Estimation



Estimation

Idea of small area estimation:

„Borrowing strength“ by:

▪ Using/Adding auxiliary or proxy variables which are available

– On a higher aggregated level, 

– Example: muncipalities – länder, 

– Drawback: with this choice, the special properties of the target municipality are thereby often levelled

– Not in the target area but in an area with very similar properties and high correlation to the target area

– Sea resort town – all holiday resort towns (including ski resort towns), small village – neighbouring village(s)

– from the same area (compare to regression estimation)

Estimation
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Idea of small area estimation:

Crucial for successful small area estimation:

▪ Auxiliary or proxy variables possess a high correlation with the target variable

Estimation



Estimation

small area estimation is largely model-based:

 There is an error which has to be taken in account according to model-misspecification

 In practice: the model is believed to be „true“ and no specific misspecification error will be
introduced,

 Although: contradictory to one of the most important assertion of model-based statistics:

 „All models are wrong, but some are useful“

Estimation
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2 simple and popular models:

1) Unit-level model

𝑦𝑑 = 𝑥𝑑
′ 𝛽 + 𝑒𝑖,𝑑 mit 𝑒𝑖,𝑑 ~ iid N(0; 𝜎𝑒

2)

With d domain and auxiliary information available for every sample unit

Estimation
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2 simple and popular models:

2)  Area-level model

𝑦𝑑 = 𝑥𝑑
′ 𝛽 + 𝑒𝑑 mit 𝑒𝑑 ~ iid N(0;

𝜎𝑒
2

𝑛𝑑
) 

With d domain and auxiliary information available only as a total for the area

Important: the regression parameter 𝛽 will be calculated according to the aggregated areas for
stabilisation purposes
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small area estimation is largely model-based:

▪ Since aggregated data of the domains or even the whole population is used to extract an 
estimate for the target domain, we call this type of estimators synthetic estimators

▪ If, for all domains d the relationship between the auxiliary variable and the target variable 
remained equal, then this type of synthetic estimators would be unbiased and efficient.

▪ This is rarely the case

Estimation
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small area estimation is largely model-based:

▪ Therefore a domain-specific factor 𝑢𝑑 will be added to the equation which leads to

𝑦𝑑 = 𝑥𝑑
′ 𝛽 + 𝑢𝑑 + 𝑒𝑖,𝑑 mit 𝑢𝑑 ~ iid N(0; 𝜎𝑢

2)  und  𝑒𝑖,𝑑 ~ iid N(0; 𝜎𝑒
2) 

For the unit-level model and 

𝑦𝑑 = 𝑥𝑑
′ 𝛽 + 𝑢𝑑 + 𝑒𝑑 mit 𝑢𝑑 ~ iid N(0; 𝜎𝑢

2)  und  𝑒𝑑 ~ iid N(0;
𝜎𝑒
2

𝑛𝑑
) 

For the area-level model
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Estimation
small area estimation is largely model-based:

▪ Battese, Harter und Fuller (1988) introduce for the Unit-Level-Model an EBLUP which is the most popular approach in the literature for
the mean of y:

෠ത𝑦𝑑
𝐵𝐻𝐹 = 𝑋𝑑

′ መ𝛽 + ො𝑢𝑑 𝑤𝑖𝑡ℎ

ො𝑢𝑑 = ො𝛾𝑑 ത𝑦𝑑 − 𝑥𝑑
′ መ𝛽 𝑎𝑛𝑑 𝛾𝑑 =

ෝ𝜎𝑢
2

ෝ𝜎𝑢
2+

ෝ𝜎𝑒
2

𝑛𝑑

.
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small area estimation is largely model-based:

After a little cosmetic we can display this estimator in the following form:

෠ത𝑦𝑑
𝐵𝐻𝐹 = ො𝛾𝑑 ത𝑦𝑑 + ത𝑋𝑑 − ҧ𝑥𝑑

′ መ𝛽 + 1 − ො𝛾𝑑 𝑋𝑑
′ መ𝛽

As a composite estimator by a weighted sum of a direct GREG-estimator and a synthetic estimator.

Using our sampling estimation notation, the first sum can be written as

σ
𝑖=1
𝑛𝑑 𝑤𝑖,𝑑𝑦𝑖,𝑑 +

෡𝛽´ σ𝑖=1
𝑁𝑑 𝑋𝑖,𝑑 − σ

𝑖=1
𝑛𝑑 𝑤𝑖,𝑑𝑥𝑖,𝑑
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small area estimation is largely model-based:

Properties of the BHF estimator:

▪ If the fraction of the variance of 𝑢𝑑 in relation to the overall model variance is large, we can assume a large difference in 
domains regarding the relationshoip between target and auxiary variables

▪ Together with a large domain sample size 𝑛𝑑 yields a high weight factor for the direct GREG estimation component compared
the synthetic estimation component

▪ Since the synthetic estimation component is usually biased, the complete composite estimation estimator will be biased

▪ Therefore for quality assessment purposes we don‘t compare variances but the Mean Squared Error (MSE), or the Relative 
Root Mean Squared Error (RRMSE), respectively. 

▪ The estimation of MSE or RRMSE is highly complicated, usually based on simulation procedures
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small area estimation is largely model-based:

 The most popular area-level-model estimator was introduced by Fay und Herriot (1979)

 This estimator corresponds mainly to the Battese, Harter, Fuller estimator for the unit-level-model.

Estimation



Estimation
small area estimation is largely model-based:

Properties of the FH-estimator:

 Since auxiliary variables are only available on domain level, we cannot use the GREG-estimator for the direct
estimation part.

 Therefore the GREG will be replaced by the Horvitz-Thompson estimator.

 The error terms 𝑒𝑑 regarding the regressions model 𝑦𝑑 = 𝑥𝑑
′ 𝛽 + 𝑢𝑑 + 𝑒𝑑 measure only the errors in the sums, not 

for the singel units.

 If the underlying model is not appropriate we can get serious bias introduced by the synthetic component (valid 
also for the BHF-estimator)
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Conclusion:

 The (Relative) Root Mean Squared Error (RRMSE) of the introduced composite estimators can be
significant smaller than the (relative) Standard Error of the direct estimator. 

 Even with a domain sample size of one or zero, we can still estimate the domain total/mean (by
exclusively making use of the synthetic estimation part) 
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