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STEP TO COMPUTE SAS



DESIGN-BASED INFERENCE

Element Sample Design

Population 𝑈 = {1,… ,𝑁}

𝑌 = {𝑦1… , 𝑦𝑁}

Sample s = {𝑖1… . , 𝑖𝑛} ∈ 𝑆𝜋

𝑦 = (𝑦𝑖1… , 𝑦𝑖𝑛)

Probability Distribution 𝑃(𝑠)

Parameter 𝜃 = ℎ(𝑦1, … , 𝑦𝑁)

Estimator ෠𝜃(𝑠)



DIRECT ESTIMATOR

▪ U finite population of size N

▪  (𝑦1… , 𝑦𝑁) measurements at the target variable on population units

▪  Target quantity: example population mean

h (𝑦1… , 𝑦𝑁) =σ𝑖=1
𝑁 𝑦𝑖 /𝑁

▪ s random sample of size n drawn from the population U

▪ r = U-s non-sample unit of size (N-n)



BASIC DIRECT ESTIMATOR

▪ πj probability of inclusion of unit j in the sample

▪ dj = 1/πj sampling weight for unit j

▪ Horvitz-Thompson (HT) estimator of mean

෠ത𝑌𝐷𝐼𝑅 =
1

𝑁
෍

𝑖=1

𝑛

𝑑𝑖𝑦𝑖

▪ Design-unbiased variance estimator (under approximation):

෢𝑉(෠ത𝑌𝐷𝐼𝑅) ≅
1

𝑁
෍

𝑖=1

𝑛

𝑑𝑖(1 − 𝑑𝑖)𝑦𝑖
2



DOMAIN ESTIMATION

▪ U partitioned into D domains U1, . . . , UD of sizes N1, . . . , ND 

▪ sd   sub-sample of size nd drawn from Ud 𝑛 = σ𝑑=1
𝐷 𝑛𝑑

▪ rd = Ud − sd sample complement, of size Nd − nd .

▪ Target parameter: domain mean

ത𝑌𝑑 =෍

𝑖=1

𝑁𝑑

𝑦𝑖 /𝑁𝑑



▪ Horvitz-Thompson (HT) estimator of domain mean

෠ത𝑌𝐷𝐼𝑅
𝑑 =

1

𝑁𝑑
෍

𝑖∈ 𝑠𝑑

𝑑𝑖𝑦𝑖

▪ Design-unbiased variance estimator (under approximation)

ෞ𝑣𝑎𝑟( ෠ത𝑌𝐷𝐼𝑅
𝑑 ) ≅

1

𝑁𝑑
෍

𝑖∈ 𝑠𝑑

𝑑𝑖(1 − 𝑑𝑖)𝑦𝑖
2

▪ HT uses only target variable and area-specific sample data

BASIC DIRECT ESTIMATOR (DOMAIN)

Let’s go to R



▪ p auxiliary variables Xik, k = 1, . . . , p and  i = 1,…,n

▪ Known population totals of the p variables in the domains d  

𝑿𝒅 = 𝑋1𝑑 , … , 𝑋𝑝𝑑 , d = 1,… , D 

ADJUSTMENTS BASIC ESTIMATOR USING AUXILIARY VARIABLES



ADJUSTMENTS BASIC ESTIMATOR USING AUXILIARY VARIABLES

▪ Attempts to improve the precision of the traditional HT estimator by 

using correlation between target variable and  covariates 

through an adjustment of the initial sampling weights.

▪ This estimator is still approximatively design-unbiased, and 

should allow decreasing the design-variance.

▪ It is still a direct estimator, because it makes use of just the 

domain information 



EXAMPLE 1. RATIO ESTIMATOR

▪ HT estimator of ത𝑋𝑑
෠ത𝑋𝐷𝐼𝑅
𝑑 =

1

𝑁𝑑
σ𝑖∈ 𝑠𝑑

𝑑𝑖𝑥𝑖

▪ Adjustment factor:  𝑔𝑑 =
ത𝑋𝑑
෠ത𝑋𝐷𝐼𝑅
𝑑

▪ Ratio estimator with auxiliary variable X:

෠ത𝑌𝑅
𝑑 =

ത𝑋𝑑
෠ത𝑋𝐷𝐼𝑅
𝑑

෠ത𝑌𝐷𝐼𝑅
𝑑 =

1

𝑁𝑑
෍

𝑖∈ 𝑠𝑑

𝑑𝑖𝑔𝑑𝑦𝑖



EXAMPLE 2. POST STRATIFIED ESTIMATOR

area d

Nd=Nd1+Nd2+Nd3+Nd4

Nd1    Nd2     Nd3     Nd4

▪ J post-strata (j = 1, . . . , J) cut across the domains.

▪ Ndj known count in the intersection of domain d 

and post-stratum j.

▪ Mean of domain d :   ത𝑌𝑑 =
1

𝑁𝑑
σ𝑗=1
𝐽

𝑁𝑑𝑗 ത𝑌𝑑𝑗

෠ത𝑌𝑃𝑆𝑇
𝑑 =෍

𝑗=1

𝐽
𝑁𝑑𝑗

𝑁𝑑
෠ത𝑌𝐷𝐼𝑅
𝑑𝑗



▪ Linear regression model  𝑦𝑗 = 𝑥𝑗
𝑇𝛽 + 𝑒𝑗  𝐸 𝑒𝑗 = 0, 𝐸 𝑒𝑗

2 = 𝜎2, 𝑗 = 1,… ,𝑁

▪ Generalized regression (GREG) estimator

෠ത𝑌𝐺𝑅𝐸𝐺
𝑑 = ෠ത𝑌𝐷𝐼𝑅

𝑑 -(𝑿𝒅 −
෡ഥ𝑿𝐷𝐼𝑅
𝑑 )෡𝑩𝑑 =

1

𝑁𝑑
σ𝑖∈ 𝑠𝑑

𝑤𝑖𝑦𝑖

EXAMPLE 3.GENARALIZED REGRESSION ESTIMATOR

Let’s go to R



Data Requirements:

▪ Design weights assigned to sample units across the specified area

▪ Horvitz-Thompson (HT) estimator: total domain population count (Nd)

▪ Generalized Regression Estimator (GREG): Population totals of auxiliary 

variables within the specified domains.

▪ Post-stratified estimator: Population totals of auxiliary variables within the 

specified domains and post-strata.

SUMMING UP DIRECT ESTIMATOR



SUMMING UP DIRECT ESTIMATOR

ADVANTAGES:

▪ Nonparametric approach: Free from reliance on specific model assumptions

▪ Incorporation of sampling weights: Allows for approximate design-

unbiasedness and design consistency with increasing sample size (n)

▪ Additivity (Benchmarking property): Demonstrates efficacy in benchmarking 

comparisons.

DRAWBACKS :

▪ Increased variance of the estimator (V(Y)) as sample size (n) decreases, 

rendering it highly inefficient for small domains.

▪ They cannot be calculated for non-sampled areas (nd = 0).



SYNTHETIC ESTIMATORS: 

▪ A reliable direct estimator for a broad area, covering several small 

areas, is used  to derive an indirect estimator for a small area.

▪ Produced under the assumption that the  small areas have the same 

characteristics as the broad area.

COMPOSITE ESTIMATORS: 

▪ A linear combination between a direct  estimator and a synthetic 

one using a design-based approach or by assuming an explicit 

area or unit-level model

▪ Represents a good  compromise in terms of efficiency between the 

characteristics of the two  components

INDIRECT ESTIMATOR



SYNTHETIC ESTIMATORS

SIMPLE EXAMPLE:

 

▪ Target:  ത𝑌𝑑 = σ𝑖=1
𝑁𝑑 𝑦𝑖 /𝑁𝑑   

▪  Assumption:  ത𝑌𝑑 = ത𝑌

▪  Synthetic estimator of  ത𝑌𝑑 :

෠ത𝑌𝑆𝑌𝑁
𝑑 =

1

𝑁
෍

𝑖∈𝑠

𝑑𝑖𝑦𝑖



POST-STRATIFIED SYNTHETIC ESTIMATOR

area d

Nd=Nd1+Nd2+Nd3+Nd4

Nd1    Nd2     Nd3     Nd4

▪ J post-strata (j = 1, . . . , J) cut across the domains.

▪ Ndj known count in the intersection of domain d 

and post-stratum j.

▪ Mean of domain d :   ത𝑌𝑑 =
1

𝑁𝑑
σ𝑗=1
𝐽 𝑁𝑑𝑗 ത𝑌𝑑𝑗

▪ Implicit model  ത𝑌𝑑𝑗 = ത𝑌𝑗  for all d and j  



POST-STRATIFIED SYNTHETIC ESTIMATOR

▪ Post-stratified synthetic estimator:

෠ത𝑌𝑆𝑌𝑁
𝑑 =෍

𝑗=1

𝐽
𝑁𝑑𝑗

𝑁𝑑
෠ത𝑌𝐷𝐼𝑅
𝑗

Need:

▪ reliable direct estimators of ෠ത𝑌𝐷𝐼𝑅
𝑗

.

▪ homogeneity within each post-stratum.



▪ The variance of synthetic estimators depends upon the variance of ෠ത𝑌𝐷𝐼𝑅
𝑗

 

being relatively smaller compared to that of the direct estimator in the 

domain. 

▪ Synthetic estimators are reliant on robust assumptions and may exhibit 

bias when these assumptions are violated.

▪ Therefore, needs to estimate the Mean Squared Error (MSE), accounting 

for both bias and variance.

MSE SYNTHETIC ESTIMATOR

Let’s go to R



ADVANTAGES:

▪ They facilitate the production of estimates even in non-sampled regions.

▪ They can reduce the variance of direct estimates.

▪ They are straightforward to implement.

DRAWBACKS :

▪ They do not account for  between-area heterogeneity, introducing significant bias.

▪ The assumption necessitates validation

▪ Stable and area-specific design MSE estimators are unavailable.

▪ Adjustments for benchmarking are indispensable.

SUMMING UP SYNTETIC ESTIMATOR



Defined as a linear combination of a direct estimator and a synthetic 

estimator. This approach aims to balance the bias of the synthetic estimator 

with the variance of the direct estimator within a given domain.

෠ത𝑌𝐶𝐸
𝑑 = 𝜙𝑑

෠ത𝑌𝐷𝐼𝑅
𝑑 + 1 − 𝜙𝑑

෠ത𝑌𝑆𝑌𝑁
𝑑

where:

▪
෠ത𝑌𝐷𝐼𝑅
𝑑  is the direct estimator for the 𝑑 small area

▪
෠ത𝑌𝑆𝑌𝑁
𝑑 is a synthetic estimator for the 𝑑 small area

▪ 𝜙𝑖 is a suitably chosen weight, with 0 ≤ 𝜙𝑑 ≤ 1

COMPOSITE ESTIMATORS

Let’s go to R



ADVANTAGES:

▪ They cannot exhibit a higher design variance than the direct estimator or a 
greater bias than the synthetic one.

DRAWBACKS :

▪ They cannot be computed for non-sampled domains.

▪ Stable and domain-specific design Mean Squared Error estimators are 
unavailable.

▪ Adjustment for benchmarking is necessary.

SUMMING UP COMPOSITE ESTIMATOR



DESIGN-BASED vs MODEL-BASED INFERENCE

Element Under Design Under Model

Population 𝑈 = {1,… ,𝑁} y~𝑃𝜃

𝑌 = {𝑦1… , 𝑦𝑁}

Sample s = {𝑖1… . , 𝑖𝑛} ∈ 𝑆𝜋 𝒚 = (𝑦1… , 𝑦𝑛)

𝑦 = (𝑦𝑖1… , 𝑦𝑖𝑛) 𝑦𝑖 𝑖𝑖𝑑

Probability Distribution 𝑃(𝑠) 𝑃𝜃(𝒚)

Parameter 𝜃 = ℎ(𝑦1, … , 𝑦𝑁) 𝜃 𝑖. 𝑒. 𝐸𝑃𝜃(𝑦)

Estimator ෠𝜃(𝑠) ෠𝜃(𝒚)



SMALL AREA ESTIMATION - MODEL-BASED METHODS

AREA-LEVEL MODELS

▪ Models are specified at area level.

▪ Rely on area-level data obtained from surveys, both direct estimates and relative 

precision, as well as covariates.

▪ Accessing data is less complex compared to acquiring unit-level data.

UNIT-LEVEL MODELS

▪ Models are specified at the unit level.

▪ Utilize unit-level data, such as survey data, for model fitting purposes.

▪ Incorporate area-level covariates as predictor variables.

▪ Accessing unit-level data may be difficult due to potential confidentiality concerns.



AREA-LEVEL MODELS: THE FAY-HERRIOT MODEL

1. Sampling model

 ෠𝜃𝑑 = 𝜃𝑑 + 𝑒𝑑    𝑑 = 1,… , 𝐷

෠𝜃𝑑 is a direct design-unbiased estimator (e.g HT) 

𝑒𝑑 is the known sampling error of the direct estimator 

2. Linking model

𝜃𝑑 = 𝑿𝑇𝛽 + 𝑢𝑑   𝑑 = 1,… , 𝐷
𝑢𝑑~𝑁 0, 𝜎𝑢

2     with 𝜎𝑢
2 unknown

3. Combined model: Linear mixed model
෠𝜃𝑑 = 𝑿𝑇𝛽 + 𝑢𝑑 + 𝑒𝑑



AREA-LEVEL MODELS: THE FAY-HERRIOT MODEL

▪ The EBLUP under the Fay-Herriot (FH) model is obtained by 

෠𝜃𝑑
𝐹𝐻 = 𝑿𝑇 መ𝛽 + ො𝑢𝑑 = 𝛾 ෠𝜃𝑑

𝐷𝐼𝑅 + (1 − 𝛾) 𝑿𝑇 መ𝛽

▪ An MSE estimator of the small area estimator of the mean

𝑀𝑆𝐸 ෠𝜃𝑑
𝐹𝐻 = 𝑔1 + 𝑔2+𝑔3

𝑔1and 𝑔2 uncertainty of BLUP, treating variance components as known

𝑔3 uncertainty due to estimation of the variance components
Let’s go to R



SUMMING UP THE FAY-HERRIOT MODEL

ADVANTAGES:

▪ Relies only on area-level auxiliary data​

▪ Automatically allocates greater weight to the regression estimator in areas 

with limited sample sizes and use direct estimator as the domain sample size 

increases

▪ Often exhibits superior efficiency compared to the direct estimator

▪ Addresses unexplained between-area heterogeneity



SUMMING UP THE FAY-HERRIOT MODEL
DRAWBACKS:

▪ There is a loss of information with the aggregation of auxiliary variables

▪ The model is fitted with only D observations

▪ Model checking is essential, introducing potential linearity issues for non-

linear parameters.

▪ Preliminary estimation of sampling variances is necessary

▪ Cannot be disaggregated for subdomains

▪ The estimates needs Benchmarking adjustment



UNIT-LEVEL MODELS: BATTESE-HARTER-FULLER MODEL

Random effects model

Notation: (i =individual, d =domain)

𝑦𝑖𝑑 = 𝑥𝑖𝑑
𝑇 𝛽 + 𝑢𝑑 + 𝑒𝑖𝑑  𝑖 = 1,… , 𝑛 ,  𝑑 = 1,… , 𝐷

Random effects 𝑢𝑑~𝑁 0, 𝜎𝑢
2

Error term 𝑒𝑖𝑑~𝑁 0, 𝜎𝑒
2

Basic concept: This linear mixed model is referred to as a random intercept 

model: the intercepts are allowed to differ among the small domains, whereas the 

effects of the covariates is equal for all domains.



UNIT-LEVEL MODELS: BATTESE-HARTER-FULLER MODEL

▪ The EBLUP under the Fay-Herriot (FH) model is obtained by 

መ𝜃𝑑
𝐵𝐻𝐹 =

1

𝑁𝑑
෍

𝑖∈𝑠

𝑦𝑖𝑑 +෍

𝑖∈𝑟

ො𝑦𝑖𝑑 =
1

𝑁𝑑
෍

𝑖∈𝑠

𝑦𝑖𝑑 +෍

𝑖∈𝑟

(𝑥𝑖𝑑
𝑇 መ𝛽 + ො𝑢𝑑)

▪ An MSE estimator of the small areia estimator of the mean

𝑀𝑆𝐸 መ𝜃𝑑
𝐵𝐻𝐹 = 𝑔1 + 𝑔2+𝑔3

𝑔1and 𝑔2 uncertainty of BLUP, treating variance components as known

𝑔3 uncertainty due to estimation of the variance components
Let’s go to R



SUMMING UP BATTESE-HARTER-FULLER MODEL

ADVANTAGES

▪ Unit-level auxiliary information, which exploit the correlation with the target variable 

more effectively than area-level data.

▪ The total sample size is typically big

▪ It dynamically assigns higher weight to the regression estimator in areas with 

smaller sample sizes, transitioning to the direct estimator as the domain sample 

size grows

▪ Estimates can be disaggregated for subareas, providing detailed insights

▪ The synthetic component can be applied to non-sampled areas, enhancing 

coverage and comprehensiveness.



SUMMING UP BATTESE-HARTER-FULLER MODEL

DRAWBACKS:

▪ Unit-level auxiliary information is often challenging to obtain

▪ Limited to linear parameters

▪ Does not incorporate sampling weights

▪ Susceptible to outliers and/or deviations from normality

▪ Rigorous model checking

▪ Estimates require benchmarking adjustment to ensure comparability and 

reliability.



Thank you
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