

EU Twinning Project JO 21 ENI ST 01 22

Component 2:

Methodology for producing Small Area Statistics

Strengthening the capacity of Jordan's Department of Statistics in terms of compilation, analysis and reporting of statistical data in line with International and European best practices.

Tomas Rudys, Statistics Lithuania. State Data Agency 12-16 February 2023, Amman, Hashemite Kingdom of Jordan

Outline

- What is R (and CRAN)?
- Installing Base R (console, first script)
- R GUI (RStudio introduction)
- GSBPM and available R modules and libraries
- Introduction to R
- Getting data into R and outputting results
- Reading. Conferences
- Useful to know

Are You ready?

You ready?

What is R?

- R is a free language and environment for statistical computing and graphics.
- It is object-oriented programming language.
- Designed by: Ross Ihaka and Robert Gentleman.
- First appeared: August 1993; 28 years ago
- **Developers:** R Core Team.
- Operating systems: Windows, Linux, MacOS.
- R's capabilities are extended through user-created packages, which offer statistical techniques, graphical devices, import/export, reporting (RMarkdown, knitr), etc.
- Webpage: https://www.r-project.org/

CRAN

- The Comprehensive R Archive Network (CRAN) is R's central software repository, supported by the R Foundation.
- It contains an archive of the latest and previous versions of the R distribution, documentation, and contributed **R packages**.
- CRAN: https://cran.r-project.org/
- CRAN Mirrors: https://cran.r-project.org/mirrors.html

Installing Base R

- Go to the R Project for Statistical Computing webpage: https://www.r-project.org/
- Find link to CRAN and choose your preferred CRAN mirror
- Press Download R for Windows
- Choose base for base R installation
- Choose Download R 4.2.2 for Windows

OR

- Go directly to CRAN webpage https://cran.r-project.org/index.html
- Press Download R for Windows
- Choose base for base R installation
- Choose Download R 4.2.2 for Windows

The R *.exe file for installation will be downloaded to your computer (eg. R-4.2.2-win.exe)

R console (first script example)

RGui (64-bit)

Failas Redaquoti Peržiūrėti Kita Paketai Windows Pagalba

R graphical user interface (GUI)

RStudio

- Rattle
- StatET for R
- RKWard
- JGR
- R Commander (package Rcmdr)
- Deducer
- JASP
- Tinn-R
- BlueSky Statistics

Different RStudio versions

There are two versions of RStudio:

RStudio installation

RStudio: https://posit.co/

- Products -> RStudio IDE -> Download RStudio
- Find RStudio Desktop
- Download RStudio
- Two steps:
 - 1. Download and install R (if you don't have it)
 - 2. Install Rstudio: press Download RStudio desktop for windows

The RStudio *.exe file for installation will be downloaded to your computer (eg. RStudio-2022.12.0-353.exe)

RStudio

RStudio

– 🗆 🗙

RStudio Cheatsheets

https://posit.co/wp-content/uploads/2022/10/rstudio-ide-1.pdf

Package Development

File > New Project > New Directory > R Package hable roxygen documentation with Tools > Project Options > Build Tools

Rosveen guide at Help > Rosveen Quick Reference

See package information in the Build Tab

Install package and restart R	Run devtools: and reload cha	load_all() inges
Environment Makery Connect	term Balld Cit Tutorial	
2 Partial and Benfart Charth	G Max -	
Run R CMD	Clear and Rebuild	Clear output and rebuild
	Check Fachage 0.82	
Customize package build	Build Scorie Package Build Beary Package	Run package
options	- X Configure Build Tech	tests

RStudio opens plots in a d	edicated Plots pane
Hits Plats. Pachages Help Viewer	
Plan Steat - 0. from	S Relish + G
Navigate Open in Export	nt Delete Delete
recent plots window plot	plot all plots

RStudio opens documentation in a dedicated Help pane

G. S. Britshing Tap
within Search for
help file

Viewer pane displays HTML content, such as Shiny Tike Pars Packages this Vener

Publish to shinyapps.io, rpubs, RSConnect,	Refres
	Publish to shinyapps.io, rpubs, RSConnect,

View(<data>) opens spreadsheet like view of data set.

all Viller					9.1				
		e4 1	410.1	40.1	640.7	at. 1	en l	÷ '	-
No. 10	21.4		166.6	119	3298	2.629	18.46		
60 K. K M MOG			188.0	119	200	2.815	17.02		
Filter	rows	byw	alue		Sor	tby	5	earc	h

A first the largest adjustment that is the product of two lardy Wingson, adjustment is function() () Wingson, adjustment is function() ()	r al street and and or all street \$10 Name, all street, or pill street \$10
International Conference on Co	

environment where in executing execution has paused environment

Console	Terr	ninal		Jobs ×	
4≣ Next	3	47	•	Continue	Stop
Step through	Ste	pinto	and	Resume	Ouit debu

		ickage	mar	ager lists every installed p	ackage
•	Photo	Packages	Here	Yman	

Ci tezal 🕐 ipd	10 M M		
inore 1	(Description		mim
Install	Update	Brow	92
Packages	Packages	packa	ge site
0 1000	Simple Data frames	>	12 0
2 seyr	Tidy Neary Data	1	13 0
Click to loar library(). U package wit	d package with inclick to detach th detach() .	Package version installed	Delet from librar

RStudio: an introduction

Live demo

GSBPM and R

Awesome official statistics software (Olav ten Bosch): https://github.com/SNStatComp/awesome-officialstatistics-software

$\mathsf{GSBPM} \text{ and } \mathsf{R}$

Not just R packages!!!

CRAN task views

- The "Task Views" page (subject list) on the CRAN website lists a wide range of tasks (in fields such as Finance, Genetics, High Performance Computing, Machine Learning, Medical Imaging, Oficial statistics) for which R packages are available.
- Link: https://cran.r-project.org/web/views/

CRAN Task View: Official Statistics & Survey Statistics

Maintainer:	Matthias Templ, Alexander Kowarik, Tobias Schoch
Contact:	matthias.templ at gmail.com
Version:	2022-11-17
URL:	https://CRAN.R-project.org/view=OfficialStatistics
Source:	https://github.com/cran-task-views/OfficialStatistics/
Contributions:	Suggestions and improvements for this task view are very welcome and can be made through issues (the maintainer address. For further details see the <u>Contributing guide</u> .
Citation:	Matthias Templ, Alexander Kowarik, Tobias Schoch (2022). CRAN Task View: Official Statistics & https://CRAN.R-project.org/view=OfficialStatistics.
Installation:	The packages from this task view can be installed automatically using the <u>ctv</u> package. For example, coreOnly = TRUE) installs all the core packages or ctv::update.views("OfficialStatistics") install up-to-date. See the <u>CRAN Task View Initiative</u> for more details.

This CRAN Task View contains a list of packages with methods typically used in official statistics and survey statistic than one of the topics listed below. Therefore, this list is not a strict categorization and packages may be listed more the topics are the topics of the topics of the topics are the topics of the topics of the topics of the topics are topics of the topics of topi

The task view is split into several parts

R packages

- R packages are extensions to the R statistical programming language. R packages contain code, data, and documentation in a standardised collection format that can be installed by users of R, typically via a centralised software repository such as CRAN.
- https://cran.r-project.org/index.html -> Packages
- Currently, the CRAN package repository features 19144 available packages.
- Available Packages: https://cran.r-project.org/web/packag es/available_packages_by_name.html
- Every package has its own webpage: https://cran.rproject.org/web/packages/sae/index.html

```
R packages (instalation)
```

Install R package with function install.packages("name_of_the_package") in your R script:

install.packages("sae")

- In RStudio use the tab Packages -> Install. The window for installation will appear.
- Or install from downloaded file.

R packages (loading)

Once installed R packages have to be loaded into the session to be used.

library(xyz)

The **library()** by default returns an error if the requested package does not exist.

require(xyz)

The **require()** is designed to be used inside functions as it gives a warning message and returns a logical value say, FALSE if the requested package is not found and TRUE if the package is loaded.

R packages (loading example)

library(sae)

- ## Įkeliamas reikalingas paketas: MASS
- ## Įkeliamas reikalingas paketas: 1me4
- ## Įkeliamas reikalingas paketas: Matrix

R packages (example of using package functions)

Load data set with synthetic income data for provinces (d
data(incomedata)

Load population sizes of provinces
data(sizeprov)

Compute Horvitz-Thompson direct estimator of mean income # province under random sampling without replacement within result1 <- direct(y=income, dom=prov, sweight=weight, domsize=sizeprov[,2:3], data=incomedata) head(result1)

##		Domain	SampSize	Direct	SD	CV
##	1	1	96	7121.005	978.9280	13.747049
##	2	2	173	13091.669	1380.7139	10.546508
##	3	3	539	13054.001	697.0416	5.339678
##	4	4	198	13158.890	1242.0200	9.438638
##	5	5	58	10592.494	1802.3255	17.015120
##	6	6	494	13213.102	759.5069	5.748134

Working with R packages

The pacman package provides a function to automatically install a package if it is not available locally. In addition to CRAN it also tries to install from Bioconductor.

```
#install.packages("pacman")
library(pacman)
p_load("survey", "sampling", "ggplot3")
```

Warning: package 'ggplot3' is not available for this ver ## ## A version of this package for your version of R might be ## see the ideas at ## https://cran.r-project.org/doc/manuals/r-patched/R-admin ## Warning: nepavyko pasiekti saugyklos http://www.stats.o. nepavyko atverti URL 'http://www.stats.ox.ac.uk/pub/RN ## ## Warning: 'BiocManager' not available. Could not check] ## ## Please use `install.packages('BiocManager')` and then re

R tools outside CRAN

REGENESEES (R EVOLVED GENERALISED SOFTWARE FOR SAMPLING ESTIMATES AND ERRORS IN SURVEYS) BY ISTAT (Diego Zardetto).

- https://www.istat.it/en/methods-and-tools/methodsand-it-tools/process/processing-tools/regenesees
- webpage: https://diegozardetto.github.io/ReGenesees/
- Main Statistical Functions:
 - Complex Sampling Designs
 - Calibration
 - Basic Estimators
 - Variance Estimation
 - Estimates and Sampling Errors (standard error, variance, coefficient of variation, confidence interval, design effect)
 - Estimates and Sampling Errors for Complex Estimators

R tools outside CRAN

ReGenesees.GUI provides a Graphical User Interface for the ReGenesees package, based on tcltk. - It has been developed for users who might prefer to interact with ReGenesees through a user-friendly mouse-click graphical interface (rather than through R's command line).

Calif - Calibration of weights of statistical surveys.

- It is a Shiny web app for calibration of weights of statistical surveys prepared by Statistical Office of the Slovak Republic.
- https://tinyurl.com/ywxy78rv
- GitHub Repository: https://github.com/SO-SR/Calif

R tools outside CRAN

if 4.0 Overview Data Calit

	\mathcal{C} Switch to two-stage calibration
oad data	
Browse	DATA.csv
	Upload complete
Separator Semicolor Decimal Period) Comma () Space () Tab
_oad totals	5
	TOTALS CSV
Browse	
Browse	Upload complete

Loaded data

Dataset with 3648 rows and 17 columns

Show 5 v entries

Row	id_hd 🔅	REGION \$	s1a1	s1a2 🔶	s1a3 🔶	s1a4 🔶	
1	1	4	0	0	0	1	0
2	2	4	1	0	1	0	0
3	3	5	0	0	0	0	0
4	4	3	0	0	0	0	0
5	5	5	0	1	0	1	0
Row	id_hd	REGION	s1a1	s1a2	s1a3	s1a4	[

Showing 1 to 5 of 3,648 entries

Loaded totals

Dataset with 6 rows and 18 columns

Show 5 v entries

"An Introduction to R" by W. N. Venables, D. M. Smith and the R Core Team.

Getting help with functions and features

help(mean)

An alternative is

?mean

In RStudio use Help Tab.

- R commands are case sensitive
- a = <mark>5</mark>
- A = 2
- a + A
- ## [1] 7
 - Comments
- # This is comment
 - Commands are separated either by a semi-colon (';'), or by a newline.

a = 5; A = 2 a; A

[1] 5

[1] 2

The entities that R creates and manipulates are known as objects.

These may be variables, arrays of numbers, character strings, functions, or more general structures built from such components.

a = obj	= <mark>5;</mark> jects	A = 2 s()			
##	[1]	"a"	"A"	"incomedata"	"result1"
ls	()				
##	[1]	"a"	"A"	"incomedata"	"result1"

To remove objects the function rm is available: a = 5; A = 2ls()## [1] "a" " A " "incomedata" "result1" rm(a) ls()## [1] "A" "incomedata" "result1" "sizeprov" remove all objects: rm(list = ls())ls()

character(0)

If commands are stored in an external file, say script_1.R and script_2.R:

source("C:\\Users\\TomasR\\Desktop\\Jordan\\R_intro\\scrip

[1] 5 ## [1] 2

source("C:\\Users\\TomasR\\Desktop\\Jordan\\R_intro\\scrip

[1] 7

- Set working directory setwd()
- Get working directory getwd()

```
setwd("C:\\Users\\TomasR\\Desktop\\Jordan\\R_intro")
getwd()
```

[1] "C:/Users/TomasR/Desktop/Jordan/R_intro"

```
source("script_1.R")
```

[1] 5 ## [1] 2

```
source("script_2.R")
```

[1] 7

 Recommendation: in RStudio good practice to work by creating R projects

- R operates on named data structures. The simplest such structure is the numeric vector.
- Assignment operators: <- usualy = works also</p>

Assignment: use function c() or assign()

```
x < - c(1, 2, 3, 4, 5)
```

х

[1] 1 2 3 4 5

 $c(1, 2, 3, 4, 5) \rightarrow x$

х

[1] 1 2 3 4 5

```
assign("x", c(1, 2, 3, 4, 5))
х
## [1] 1 2 3 4 5
y = c(x, 0, x)
у
## [1] 1 2 3 4 5 0 1 2 3 4 5
# arithmetic: +, -, *, / and \hat{}
v = 2 * x + 1
v
## [1] 3 5 7 9 11
v1 = x + v
v1
## [1] 4 7 10 13 16
```

Introduction to ${\sf R}$

x = c(1, 2, 3, 4, 5) min(x)
[1] 1
max(x)
[1] 5 length(x)
[1] 5
<pre>sum(x)</pre>
[1] 15

```
x = c(1, 2, 3, 4, 5)
# sum(x)/length(x)
mean(x)
```

[1] 3

sum((x-mean(x))^2)/(length(x)-1)
var(x)

[1] 2.5

x = c(2, 1, 3, 5, 4)sort(x)

[1] 1 2 3 4 5
Generating regular sequences

seq(1,10), seq(from=1, to=10) and seq(to=10, from=1)
seq(1:10)

[1] 1 2 3 4 5 6 7 8 9 10

seq(-2, 2, by=.5)

[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
seq(length=10, from=-2, by=.5)

[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

```
Generating regular sequences
```

x = c(2, 3)rep(x, times=3)

[1] 2 3 2 3 2 3

rep(x, each=3)

[1] 2 2 2 3 3 3

Logical vectors are generated by conditions:

```
x = c(5, 6, 7, 2, 3, 7)
log_v = x > 5
log_v
```

[1] FALSE TRUE TRUE FALSE FALSE TRUE

The logical operators are <, <=, >, >=, == for exact equality and != for inequality.

If c1 and c2 are logical expressions:

[1] FALSE FALSE TRUE TRUE FALSE TRUE

Missing values.
NA - "not available" or a "missing value"
z = c(1:3, NA, 4, NA)
z
[1] 1 2 3 NA 4 NA
ind = is.na(z)
ind

[1] FALSE FALSE FALSE TRUE FALSE TRUE

NaN - Not a Number

0/0

[1] NaN

Inf - Inf

[1] NaN

Missing values.

NaN - Not a Number

z = c(1, 2, NA, 0/0, 0/0, Inf - Inf) z

[1] 1 2 NA NaN NaN NaN

is.na(z)

[1] FALSE FALSE TRUE TRUE TRUE TRUE
is.nan(z)

[1] FALSE FALSE FALSE TRUE TRUE TRUE

```
Character vectors
v = c("a", "b", "c")
v
## [1] "a" "b" "c"
labs = paste(c("X"), 1:5, sep="")
labs
```

[1] "X1" "X2" "X3" "X4" "X5"

Index vectors x = c(1:3, NA, 4, NA)х ## [1] 1 2 3 NA 4 NA x[2] ## [1] 2 y = x[!is.na(x)]у ## [1] 1 2 3 4 x[is.na(x)] <- 0 х ## [1] 1 2 3 0 4 0

Other types of objects:

- matrices or more generally arrays are multi-dimensional generalizations of vectors
- factors provide compact ways to handle categorical data
- lists are a general form of vector in which the various elements need not be of the same type, and are often themselves vectors or lists
- data frames are matrix-like structures, in which the columns can be of different types
- functions are themselves objects in R which can be stored in the project's workspace

R objects modes: numeric, complex, logical, character and raw

z = c(0:9);z

[1] 0 1 2 3 4 5 6 7 8 9
mode(z)

[1] "numeric"

digits = as.character(z); digits

[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"
mode(digits)

[1] "character"
d = as.integer(digits)
mode(d)

[1] "numeric"

A factor is a vector object used to specify a discrete classification (grouping) of the components.

```
nace = c("4929","8610","8610","5010","7512","5012","5010")
nace_fac = factor(nace)
nace_fac
```

[1] 4929 8610 8610 5010 7512 5012 5010
Levels: 4929 5010 5012 7512 8610

levels(nace_fac)

[1] "4929" "5010" "5012" "7512" "8610"

x <- array(1:20, dim=c(4,5)); x</pre>

##		[,1]	[,2]	[,3]	[,4]	[,5]
##	[1,]	1	5	9	13	17
##	[2,]	2	6	10	14	18
##	[3,]	3	7	11	15	19
##	[4,]	4	8	12	16	20
x <	- arı	ray(<mark>1</mark> :	20, d	lim=c((<mark>3,3</mark>))	; x
##		[,1]	[,2]	[,3]		
##	[1,]	1	4	7		
##	[2,]	2	5	8		
##	[3,]	3	6	9		

x[2,3]

[1] 8

m = matrix(1:9, nrow = 3, ncol = 3); m ## [,1] [,2] [,3] ## [1,] 1 4 7 ## [2,] 2 5 8 ## [3,] 3 6 9 m1 = matrix(1:9, nrow=3, byrow=TRUE); m1 ## [,1] [,2] [,3] ## [1,] 1 2 3 ## [2,] 4 5 6 ## [3,] 7 8 9

Introduction to ${\sf R}$

Elements can be accessed as var[row, column]						
m[1,]						
## [1] 1 4 7						
m[,1]						
## [1] 1 2 3						
# select rows 1 & 2 and columns 2 & 3 m[c(1,2),c(2,3)]						
## [,1] [,2] ## [1,] 4 7 ## [2,] 5 8						

List

```
x = c(5, 6, 7, 2, 3, 7)
v = c("a", "b", "c")
m = matrix(1:4, nrow = 2, ncol = 2)
l <- list("id" = x, "nace" = v, "m" = m)
l
```

```
## $id
## [1] 5 6 7 2 3 7
##
## $nace
## [1] "a" "b" "c"
##
## $m
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
```

l[[2]]

[1] "a" "b" "c"

1[[1]][2]

[1] 6

1[[3]][,1]

[1] 1 2

A data frame is a list with class "data.frame".

```
id = c(1, 2, 3)
nace = c("a", "b", "c")
emp = c(10, 5, 8)
df = data.frame(ent_ID=id, NACE=nace, num_emp=emp)
df
```

##		ent_{ID}	NACE	$\texttt{num_emp}$
##	1	1	a	10
##	2	2	b	5
##	3	3	с	8

Introduction to ${\sf R}$

df\$num_emp
[1] 10 5 8
attach(df) num_emp
[1] 10 5 8
detach(df)

Conditional execution: if statements

```
if (test_expression) {
   statement
}
```

```
x <- 5
if(x > 0){
print("Positive number")
}
```

[1] "Positive number"

Conditional execution: if...else statements

```
if (test_expression) {
  statement1
} else {
  statement2
}
```

```
x <- -5
if(x > 0){
print("Non-negative number")
} else {
print("Negative number")
}
```

[1] "Negative number"

Repetitive execution: for loops, repeat and while

```
for(i in 1:5) {
    x1 <- i ^ 2
    print(x1)
}
## [1] 1
## [1] 4
## [1] 9
## [1] 16
## [1] 25</pre>
```

```
x <- 1
repeat{
 print(x)
  x = x+1
    if (x == 5){
    break
                }
      }
## [1] 1
## [1] 2
## [1] 3
## [1] 4
```

```
i <- 1
while (i < 6) {
    print(i)
    i = i+1
    }</pre>
```

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

```
Writing your own functions. Syntax:
func_name <- function (argument) {</pre>
statement
}
# function to print x raised to the power y
pow <- function(x, y) {</pre>
  result <- x^y
  print(paste(x, "raised to the power", y, "is", result))
}
pow(x = 2, y = 2)
## [1] "2 raised to the power 2 is 4"
```

Plot data: plot() function

pres_data = pressure
head(pres_data)

##		temperature	pressure
##	1	0	0.0002
##	2	20	0.0012
##	3	40	0.0060
##	4	60	0.0300
##	5	80	0.0900
##	6	100	0.2700

plot(pres_data)

Define the cars vector with 5 values cars <- c(1, 3, 6, 4, 9) # Graph cars using blue points overlayed by a line plot(cars, type="o", col="blue") # Create a title with a red, bold/italic font title(main="Autos", col.main="red", font.main=4)

Autos

To read an entire data frame directly, the external file will normally have a special form.

```
HousePrice <- read.table("data.txt")
HousePrice</pre>
```

##		V1	V2	V3	V4	V5	V6		
##	1	Price	Floor	Area	Rooms	Age	Cent.heat		
##	2	52.00	111.0	830	5	6.2	no		
##	3	54.75	128.0	710	5	7.5	no		
##	4	57.50	101.0	1000	5	4.2	no		
<pre>HousePrice <- read.table("data.txt", header=TRUE)</pre>									
Ηοι	HousePrice								

##		Price	Floor	Area	Rooms	Age	Cent.heat
##	1	52.00	111	830	5	6.2	no
##	2	54.75	128	710	5	7.5	no
##	3	57.50	101	1000	5	4.2	no

Price Floor Area Rooms Age Cent.heat price_one
1 52.00 111 830 5 6.2 no 10.40
2 54.75 128 710 5 7.5 no 10.95
3 57.50 101 1000 5 4.2 no 11.50
write.table(new_df, "new_df.txt")

```
# csv files
df <- read.csv('file.csv')
write.csv(df, 'file.csv')</pre>
```

```
#Rdata files
save(df, file = 'file.Rdata')
load('file.RData')
```

```
Import Spreadsheets
```

```
read_excel(path, sheet = NULL)
# Specify which sheet to read by position or name.
```

```
excel_sheets(path)
# Get a vector of sheet names.
```

 "R Data Import/Export" by R Core Team https://cran.r-project.org/doc/manuals/r-release/R-data.pdf

possible to import different data formats and types

R Data Import (example)

```
library(readxl)
excel_sheets("data.xlsx")
```

[1] "duomenys" "Sheet1" "Sheet2" "Sheet3" "Sheet4
data = read_excel("data.xlsx", sheet = "data")
head(data)

##	#	A tibb	ole: 6 x 6	5			
##		id	nace	turn_q	hours	vat_q	emp
##		<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	1	grupe_32	245748507	475216	253114282	1024.
##	2	2	grupe_44	99654980	917213	104517461	2028.
##	3	4	grupe_9	86238221	944252	87607361	2216.
##	4	5	grupe_43	67514000	70962	68144446	151.
##	5	6	grupe_43	56587531	272702	58011296	607.
##	6	7	grupe_5	56240816	808947	55653567	2756.

Reading. Conferences

- R bloggers: https://www.r-bloggers.com/
- The R Journal: https://journal.r-project.org/
- useR! International R User Conference: https://www.r-project.org/conferences/
- The R Project The Use of R in Official Statistics: https://r-project.ro/conferences.html#uRos_Conferences; https://github.com/uRosConf
- RStudio -> Tab Tutorial

Useful to know

- Graphs with R: https://r-graph-gallery.com/index.html
- The Tidyverse is an opinionated collection of R packages designed for data science: https://www.tidyverse.org/
- Fast aggregation of large data package data.table: https://rdatatable.gitlab.io/data.table/
- Shiny is an R package that makes it easy to build interactive web apps straight from R: https://shiny.rstudio.com/
- R Markdown for interactive documents: https://rmarkdown.rstudio.com/
- R interface to Apache Spark (sparklyr): https://spark.rstudio.com/
- Databases with R:

https://cran.r-project.org/web/views/Databases.html

RStudio Cloud: https://posit.cloud/

 $\mathsf{Use}\ \mathsf{R}$

keep-calm.net
