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On design-based estimation methods

Suppose there are estimation domains with too small sample sizes
to get sufficiently accurate direct estimates.

▶ That is, design-based direct estimation is not efficient for that
domains.

▶ Traditional design-based synthetic and composite estimators
can be efficient and they are desirable due to their simplicity,
but there are difficulties with inferences.

Direct, synthetic, and composite estimation is a necessary step
before trying model-based estimation (Tzavidis et al., 2018).
Moreover, sometimes it can be the final step if we are satisfied
with the accuracy.
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Preliminaries

▶ U = {1, . . . , N} is a finite survey population.
▶ There are M domains (areas) U1, . . . ,UM of sizes N1, . . . , NM

such that U1 ∪ · · · ∪ UM = U and Ui ∩ Uj = ∅ as i ̸= j.
▶ y is the study variable with the fixed values y1, . . . , yN in U .

This is a continuous, binary, or categorical variable.
▶ We estimate the domain parameters θi, i = 1, . . . ,M . That is

domain sums, means, proportions, or more complex
parameters.

▶ The sample s ⊂ U of size n < N is drawn according to the
sampling design p(·). Hereafter we use the symbols Pp, Ep,
varp, and MSEp to denote probability, expectation, variance,
and MSE calculated according to p(·), respectively.

3 / 31



Direct estimation in domains

Direct estimates are the first thing needed to be calculated.

▶ Let θ̂d
i be any approximately design unbiased direct estimator

of θi based on the sample si = s ∩ Ui of size ni.
▶ If ni is small, large design variance ψi = varp(θ̂d

i ) is obtained.

▶ Direct estimators ψ̂d
i of ψi have high variances themselves for

small samples si, too.

Let us estimate the domain means (or domain proportions)

θi = 1
Ni

∑
k∈Ui

yk, i = 1, . . . ,M,

where the numbers Ni are assumed to be known.
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Direct estimation. Example (I)
Weighted sample means

Let πk = Pp{k ∈ s} > 0. The weighted sample means

θ̂d
i = θ̂H

i = 1
N̂i

∑
k∈si

yk

πk
, where N̂i =

∑
k∈si

1
πk
, i = 1, . . . ,M,

are approximately unbiased estimators of the domain means θi.

The direct estimators (Särndal et al., 1992)

ψ̂d
i = ψ̂H

i = 1
N̂2

i

∑
k∈si

∑
l∈si

(1 − πkπl/πkl)
(yk − θ̂d

i )(yl − θ̂d
i )

πkπl

of the variances ψi, where πkl = Pp{k, l ∈ s} > 0, can have high
variances as well.

Note: applied when there is no (useful) auxiliary information or it
is available at the area level only.

5 / 31



Direct estimation. Example (II)
Generalized regression (GREG) estimators

Let xk = (1, x2k, . . . , xP k)′ be the vector containing the values of
auxiliary variables x2, . . . , xP for k ∈ U . Assume that the data xk

are available for k ∈ s, and the vector θxi =
∑

k∈Ui
xk/Ni of

means is known for the ith area. Denote

θ̂HT
i = 1

Ni

∑
k∈si

yk

πk
and θ̂

HT
xi = 1

Ni

∑
k∈si

xk

πk
.

The generalized regression estimators (Rao and Molina, 2015)

θ̂d
i = θ̂GR

i = θ̂HT
i + (θxi − θ̂

HT
xi )′B̂i, i = 1, . . . ,M,

of θi are approximately (asymptotically) design unbiased, where

B̂i = (B̂i1, . . . , B̂iP )′ =
(∑

k∈si

xkx′
k

ckπk

)−1 ∑
k∈si

xkyk

ckπk

with positive constants ck.
6 / 31



Explanation: the quantity B̂i estimates the characteristic

Bi = (Bi1, . . . , BiP )′ =
(∑

k∈Ui

xkx′
k

ck

)−1 ∑
k∈Ui

xkyk

ck

of the ith domain, which is, in turn, the GLS estimator of the fixed
effects βi = (βi1, . . . , βiP )′ of the assisting model Em(yk) = x′

kβi

defined for k ∈ Ui, where Em stands for the model expectation.
If it is supposed that the variances Varm(yk) = σ2

k are unequal, it
is natural to set ck = σ2

k, k ∈ Ui, and estimate them. In some
standard situations like ck = σ2, k ∈ Ui, the GREG estimator
reduces to

θ̂d
i = θ̂GR

i = θ′
xiB̂i.

Note: GREG estimator θ̂GR
i reduces to the weighted sample mean

θ̂H
i if ck is a constant and there is no auxiliary information in the

sense that xk = 1 for all k ∈ Ui.
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The direct estimators (Rao and Molina, 2015)

ψ̂d
i = ψ̂GR

i = 1
N̂2

i

∑
k∈si

∑
l∈si

(1 − πkπl/πkl)
(yk − x′

kB̂i)(yl − x′
lB̂i)

πkπl

of the variances ψi have high variances themselves for small ni.

If the design p(·) is complex and the overall sampling fraction n/N
is small (U is large), the assumption πkl ≈ πkπl, k ̸= l, is often
used, and then the approximation

ψ̂GR
i ≈ 1

N̂2
i

∑
k∈si

1
πk

( 1
πk

− 1
)

(yk − x′
kB̂i)2

is applied. The same is applied in the case of the weighted sample
means.
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Direct estimation. Example (III)
Modified GREG estimators

Let us replace the coefficients B̂i used in the GREG estimators by
the overall regression coefficient

B̂ = (B̂1, . . . , B̂P )′ =
(∑

k∈s

xkx′
k

ckπk

)−1∑
k∈s

xkyk

ckπk
,

which estimates the population characteristic

B = (B1, . . . , BP )′ =
(∑

k∈U

xkx′
k

ck

)−1 ∑
k∈U

xkyk

ck
.

Here the parameter B is taken from the assisting regression model

Em(yk) = x′
kβ, k ∈ U ,

where β = (β1, . . . , βP )′ are fixed effects defined for the whole U .
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Then the so-called modified GREG estimators of the domain
means θi are (Rao and Molina, 2015)

θ̂d
i = θ̂GRm

i = θ̂HT
i + (θxi − θ̂

HT
xi )′B̂, i = 1, . . . ,M.

The estimator θ̂GRm
i for the ith domain is still approximately

(asymptotically) design unbiased despite that the coefficient B̂
uses the sample outside the domain.

The direct estimators (Rao and Molina, 2015)

ψ̂d
i = ψ̂GRm

i = 1
N̂2

i

∑
k∈si

∑
l∈si

(1 − πkπl/πkl)
(yk − x′

kB̂)(yl − x′
lB̂)

πkπl

of the variances ψi might have high variances for small ni, too.
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Synthetic estimation and smoothing

▶ The synthetic estimator θ̂S
i of θi uses the sample of a larger

area through an implicit linking model. The model stands on
the synthetic assumption that the small domain Ui has the
same characteristics as the large area (Rao and Molina, 2015).
That θ̂S

i has a smaller design variance than θ̂d
i but is biased.

▶ Similarly, the estimators ψ̂d
i of ψi = varp(θ̂d

i ) are smoothed
applying the generalized variance function approach (Wolter,
2007). That smoothed (synthetic) ψ̂s

i provides more realistic
information on the accuracy of the direct estimator θ̂d

i than
ψ̂d

i with small ni and is used in further estimation procedures.
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Note on mean squared errors

In the design mean squared error (MSE)

MSEp(θ̂i) = Ep(θ̂i − θi)2 = varp(θ̂i) + [Ep(θ̂i) − θi]2

measuring the accuracy of the estimator θ̂i of the parameter θi,
the squared bias part

B2
p(θ̂i) = [Ep(θ̂i) − θi]2

is typically assumed negligible for the direct estimators θ̂i = θ̂d
i but

B2
p(θ̂i) cannot be ignored for the synthetic estimators θ̂i = θ̂S

i .
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Synthetic estimation. Example (I)
Weighted sample mean over population

If there is no auxiliary information, the design unbiased weighted
sample mean

θ̂S
i = θ̂H = 1

N̂

∑
k∈s

yk

πk
, where N̂ =

∑
k∈s

1
πk
, i = 1, . . . ,M,

estimating the whole population mean θ =
∑

k∈U yk/N can be
used as estimators of the domain means θi.

Explanation: the true means θi and θ are characteristics of the
definition above, and the synthetic assumption on their closeness is
used to derive the synthetic estimates θ̂H.

As ni ≪ n, one can expect that varp(θ̂H) ≪ varp(θ̂H
i ). However,

the bias part B2
p(θ̂H) can dominate MSEp(θ̂H) for domains where

the means θi differ significantly from the population mean θ.
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Let us use a similar idea to smooth the direct estimators ψ̂H
i of the

variances ψi = varp(θ̂H
i ). We apply the pooled variance estimator

ψ̂s
i = ψ̂sP

i =
(

1 − ni

Ni

)
ŝ2

ni
with ŝ2 = 1

N̂ − 1
∑
k∈s

(yk − θ̂H)2

πk

of ψi for each i = 1, . . . ,M .

Explanation: the smoothing (synthetic estimators ψ̂sP
i ) is based

on the synthetic assumption that the characteristics

s2
i = 1

Ni

∑
k∈Ui

(yk − θi)2 and s2 = 1
N

∑
k∈U

(yk − θ)2

are close according to the definition of synthetic estimation.
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Synthetic estimation. Example (II)
Regression-synthetic estimators

Consider the weighted sample means θ̂H
i as the direct estimators of

θi. Let zi = (1, z2i, . . . , zP i)′ be auxiliary data available for the ith
domain, and ψ̂s

i are smoothed estimators of ψi = varp(θ̂H
i ), for

example, ψ̂s
i = ψ̂sP

i . The regression-synthetic estimator

θ̂S
i = θ̂RS

i = z′
iβ̂ with β̂ =

(
M∑

i=1

ziz′
i

ψ̂s
i

)−1 M∑
i=1

ziθ̂
H
i

ψ̂s
i

of θi is obtained from the area-level model

θ̂H
i = z′

iβ + εi, i = 1, . . . ,M,

where β = (β1, . . . , βP )′ are fixed effects and the sampling errors
εi are assumed independent with Ep(εi) = 0 and varp(εi) = ψi.

Explanation: the estimators θ̂RS
i rely on the synthetic assumption

that the parameter β is the same across all domains.
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To smooth the direct estimators ψ̂H
i of the variances ψi = varp(θ̂H

i )
for the domain proportions θi, another simple method can be used.
Assume that ψi ≈ KNγ

i and estimate the parameters K > 0 and
γ ∈ R applying the regression model (Dick, 1995)

log(ψ̂H
i ) = log(K) + γ log(Ni) + ηi, i = 1, . . . ,M,

where errors ηi are independent and identically distributed. Then
the smoothed variances are

ψ̂sD
i = K̂N γ̂

i , i = 1, . . . ,M,

which can be next multiplied by a bias correction as suggested in
Hidiroglou et al. (2019).

16 / 31



Synthetic estimation. Example (III)
GREG-synthetic estimators

Assume that unit-level auxiliary information is at our disposal so
that we can build the direct GREG estimators. Recall their
simplified (projection) form θ̂GR

i = θ′
xiB̂i.

Replacing the quantities B̂i by the overall regression coefficient B̂
as we did to derive the modified GREG estimators, we get the
synthetic estimators

θ̂S
i = θ̂GRS

i = θ′
xiB̂, i = 1, . . . ,M,

called GREG-synthetic estimators or indirect GREG estimators.

Explanation: the GREG-synthetic estimator θ̂GRS
i is supported by

the synthetic assumption that the domain-specific parameter B̂i is
close to the global characteristic B̂.
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To smooth the direct estimators ψ̂GR
i of ψi = varp(θ̂GR

i ), one can
apply ANOVA-type pooling (Boonstra et al., 2008)

ψ̂s
i = ψ̂sAP

i =
(

1 − ni

Ni

)
ŝ2

p

ni
with ŝ2

p = 1
n−M

M∑
i=1

(ni − 1)ψ̂GR
i

similar to the one considered above.
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Estimation of MSE of the synthetic estimators
For any synthetic estimator θ̂S

i , the main problem is its bias Bp(θ̂S
i )

estimation, while the variance part varp(θ̂S
i ) of the MSE can be

approximated analytically or evaluated at least by applying
resampling methods such as a bootstrap or jackknife.

One choice is to apply an approximately design unbiased estimator
(Gonzalez and Waksberg, 1973)

mseu(θ̂S
i ) = (θ̂S

i − θ̂d
i )2 − σ̂2(θ̂S

i − θ̂d
i ) + σ̂2(θ̂S

i )

of MSEp(θ̂S
i ), where σ̂2(·) stands for an estimator of varp(·). A

good approximation to this estimator is

mseu(θ̂S
i ) ≈ (θ̂S

i − θ̂d
i )2 − ψ̂d

i .

However, both the estimators have large design variances and can
even take negative values (Rao and Molina, 2015).
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If the aim is to compare different synthetic estimation methods,
one can average the MSE estimator over domains to get a stable
accuracy characteristic (Gonzalez and Waksberg, 1973). That is,
we can take

mseu(θ̂S
i ) = 1

M

M∑
m=1

mseu(θ̂S
m).

However, this estimator is not area-specific.
There are no straightforward ways to smooth unstable estimators
mseu(θ̂S

i ) of MSEp(θ̂S
i ) for individual domains, therefore additional

assumptions should be introduced to derive more stable estimators
of MSE. For example, the synthetic assumption (Marker, 1995)

B2
p(θ̂S

i ) ≈ 1
M

M∑
m=1

B2
p(θ̂S

m)

allows to derive

mseM(θ̂S
i ) = mseu(θ̂S

i ) + σ̂2(θ̂S
i ) − 1

M

M∑
m=1

σ̂2(θ̂S
m).
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Summary for the synthetic estimators

Advantages:
▶ Their variances are small compared to that of the direct

estimators;
▶ Estimation is possible for domains where there is no sample.

Disadvantages:
▶ They can be seriously biased due to strong synthetic

assumptions;
▶ Their biases persist as the sample size increases;
▶ Benchmarking adjustments are needed;
▶ There are no stable MSE estimators.
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Design-based composite estimation
The design-based linear composition

θ̃C
i = θ̃C

i (λi) = λiθ̂
d
i + (1 − λi)θ̂S

i

with weight 0 ⩽ λi ⩽ 1 is a trade-off between the larger variance
of the direct estimator θ̂d

i and the bias of the synthetic estimator
θ̂S

i . Or, in other words, it is a balance between unbiasedness of θ̂d
i

and smaller variance of θ̂S
i .

Question: how to properly choose the weights λi, i = 1, . . . ,M?

Minimizing the function MSEp(θ̃C
i (λi)) with respect to λi, the

optimal weight λ∗
i is obtained and then approximated using

λ∗
i ≈ MSEp(θ̂S

i )
MSEp(θ̂d

i ) + MSEp(θ̂S
i )
,

see Rao and Molina (2015).
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Approximations to optimal compositions
1. A straightforward estimation of the optimal weight λ∗

i leads to
estimators like

λ̂i = mseu(θ̂S
i )

ψ̂s
i + mseu(θ̂S

i )

with the considered estimator mseu(θ̂S
i ) of MSEp(θ̂S

i ) from
Gonzalez and Waksberg (1973). This is too unstable to be
used in practice.

2. Purcell and Kish (1979) propose to assume a common weight
λi = λ in the composition θ̃C

i (λi) and minimize the function∑M
m=1 MSEp(θ̃C

m(λ)) with respect to λ. It leads to more
stable estimators

λ̂ =
M∑

m=1
mseu(θ̂S

m)
/{

M∑
m=1

[ψ̂s
m + mseu(θ̂S

m)]
}
,

but that pooling over domains may not be reasonable for
some of them.
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3. In a sample-size-dependent estimation in Drew et al. (1982),
λ̂i is set to be dependent on the sample size in the domain.
The estimators of the weights λi are taken to be of the form

λ̂i = λ̂i(δ) =
{

1 if N̂i/Ni ⩾ δ,
N̂i/(δNi) otherwise.

These weights are dependent on the single subjectively chosen
parameter δ for all domains with default value δ = 1.
However, a choice of δ may vary from survey to survey. To
choose the value of δ for the composition θ̃C

i (δ) = θ̃C
i (λ̂i(δ)),

one can minimize numerically the sample based function

r(δ) = mseu(θ̃C
i (δ)) = 1

M

M∑
m=1

mseu(θ̃C
m(δ))

with respect to δ, where θ̃C
i (δ) is treated as the synthetic

estimator (Čiginas, 2020).
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Estimation of MSE of the composite estimators
Treating any composition θ̂C

i = θ̃C
i (λ̂i) as the synthetic estimator,

we can apply the same formulas to estimate MSEp(θ̂C
i ) introduced

for the synthetic estimators:
▶ approximately unbiased but unstable mseu(θ̂C

i );
▶ stable but not area-specific mseu(θ̂C

i );
▶ area-specific but biased mseM(θ̂C

i ).

Alternative method. Assuming that θ̂C
i = θ̃C

i (λ̂i) approximates
the optimal combination θ̂opt

i = θ̃C
i (λ∗

i ) well, one can apply the
estimator (Čiginas, 2021)

mseb(θ̂C
i ) = λ̂i(1 − λ̂i)ψ̂s

i + σ̂2(θ̂C
i )

of MSEp(θ̂C
i ), where the term σ̂2(θ̂C

i ) is an estimator of varp(θ̂C
i ).

The estimator takes only non-negative values but can be biased.
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One more (self-adapting) composite estimator
The composition is built in two steps (Čiginas, 2021).

1. To estimate the optimal coefficient λ∗
i , take the estimator

λ̂
(1)
i = σ̂2(θ̂S

i )
ψ̂s

i + σ̂2(θ̂S
i )
,

and m̂(1)
i = mseb(θ̃C

i (λ̂(1)
i )) is the MSE estimator for the

composition θ̃C
i (λ̂(1)

i ).

2. Since it is expected that λ̂(1)
i < λ∗

i , treat θ̃C
i (λ̂(1)

i ) as the
synthetic estimator and build the new composition

θ̂Cb
i = λ̂

(2)
i θ̂d

i + (1 − λ̂
(2)
i )θ̃C

i (λ̂(1)
i ) with λ̂

(2)
i = m̂

(1)
i

ψ̂s
i + m̂

(1)
i

,

and mseb(θ̂Cb
i ) = λ̂

(2)
i (1 − λ̂

(2)
i )ψ̂s

i + σ̂2(θ̂Cb
i ) is for the MSE.
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Direct and synthetic estimators to combine

▶ If there is no auxiliary information, combine the weighted
sample means θ̂H

i with the weighted sample mean over
population θ̂H.

▶ If auxiliary information is available at the area level only,
combine the weighted sample means θ̂H

i with the
regression-synthetic estimators θ̂RS

i .
▶ If auxiliary information is available at the unit level, combine

GREG estimators θ̂GR
i or modified GREG estimators θ̂GRm

i

with GREG-synthetic estimators θ̂GRS
i .
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Benchmarking

The direct estimator θ̂d of the whole population mean θ is usually
reliable, but the indirect estimators θ̂i = θ̂S

i or θ̂C
i of the domain

means θi do not necessarily satisfy

1
N

M∑
m=1

Nmθ̂m = θ̂d.

Therefore, the synthetic or composite estimators are benchmarked.
A simple ratio adjustment is

θ̂∗
i = θ̂iθ̂

d
/

1
N

M∑
m=1

Nmθ̂m,

for i = 1, . . . ,M .
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Some final notes

▶ The design-based direct, synthetic, and composite estimators
for the domains of interest are the initial triplet of estimators
that needed to be calculated before proceeding to
model-based estimation.

▶ The choice of the particular triplet or triplets should be based
on the availability of auxiliary information. From these
relatively simple estimators, we get information on the
predictive power of the auxiliary variables and heterogeneity
across the estimation domains, which is useful for further
modeling.

▶ If we are satisfied with the accuracy of the indirect estimators,
the tested composite estimator can be one that is used to
solve the small area estimation problem of the survey.
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